Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtre
Ajouter des filtres

Type de document
Gamme d'année
2.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.05.23.22275458

Résumé

Covid-19 has caused more than 1 million deaths in the US, including at least 1,433 deaths among children and young people (CYP) aged 0-19 years. Deaths among US CYP are rare in general, and so we argue here that the mortality burden of Covid-19 in CYP is best understood in the context of all other causes of CYP death. Using publicly available data from the National Center for Health Statistics, and comparing to mortality in 2019, the immediate pre-pandemic period, we find that Covid-19 is a leading cause of death in CYP aged 0-19 years in the US, ranking #9 among all causes of deaths, #5 in disease related causes of deaths (excluding accidents, assault and suicide), and #1 in deaths caused by infectious / respiratory diseases. Due to the impact of mitigations such as social distancing and our comparison of a single disease (Covid-19) to groups of causes such as deaths from pneumonia and influenza, these rankings are likely conservative lower bounds. Our findings underscore the importance of continued vaccination campaigns for CYP over 5 years of age in the US and for effective Covid-19 vaccines for under 5 year olds.


Sujets)
Maladies de l'appareil respiratoire , Pneumopathie infectieuse , Mort , COVID-19
3.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.11.01.21265731

Résumé

The SARS-CoV-2 Gamma variant spread rapidly across Brazil, causing substantial infection and death waves. We use individual-level patient records following hospitalisation with suspected or confirmed COVID-19 to document the extensive shocks in hospital fatality rates that followed Gamma’s spread across 14 state capitals, and in which more than half of hospitalised patients died over sustained time periods. We show that extensive fluctuations in COVID-19 in-hospital fatality rates also existed prior to Gamma’s detection, and were largely transient after Gamma’s detection, subsiding with hospital demand. Using a Bayesian fatality rate model, we find that the geographic and temporal fluctuations in Brazil’s COVID-19 in-hospital fatality rates are primarily associated with geographic inequities and shortages in healthcare capacity. We project that approximately half of Brazil’s COVID-19 deaths in hospitals could have been avoided without pre-pandemic geographic inequities and without pandemic healthcare pressure. Our results suggest that investments in healthcare resources, healthcare optimization, and pandemic preparedness are critical to minimize population wide mortality and morbidity caused by highly transmissible and deadly pathogens such as SARS-CoV-2, especially in low- and middle-income countries. Note The following manuscript has appeared as ‘Report 46 - Factors driving extensive spatial and temporal fluctuations in COVID-19 fatality rates in Brazilian hospitals’ at https://spiral.imperial.ac.uk:8443/handle/10044/1/91875 . One sentence summary COVID-19 in-hospital fatality rates fluctuate dramatically in Brazil, and these fluctuations are primarily associated with geographic inequities and shortages in healthcare capacity.


Sujets)
COVID-19
4.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.08.21.21262393

Résumé

Genomic sequencing provides critical information to track the evolution and spread of SARS-CoV-2, optimize molecular tests, treatments and vaccines, and guide public health responses. To investigate the spatiotemporal heterogeneity in the global SARS-CoV-2 genomic surveillance, we estimated the impact of sequencing intensity and turnaround times (TAT) on variant detection in 167 countries. Most countries submit genomes >21 days after sample collection, and 77% of low and middle income countries sequenced <0.5% of their cases. We found that sequencing at least 0.5% of the cases, with a TAT <21 days, could be a benchmark for SARS-CoV-2 genomic surveillance efforts. Socioeconomic inequalities substantially impact our ability to quickly detect SARS-CoV-2 variants, and undermine the global pandemic preparedness. One-Sentence SummarySocioeconomic inequalities impacted the SARS-CoV-2 genomic surveillance, and undermined the global pandemic preparedness.

5.
arxiv; 2020.
Preprint Dans Anglais | PREPRINT-ARXIV | ID: ppzbmed-2006.02985v1

Résumé

This tutorial shows how to build, fit, and criticize disease transmission models in Stan, and should be useful to researchers interested in modeling the COVID-19 outbreak and doing Bayesian inference. Bayesian modeling provides a principled way to quantify uncertainty and incorporate prior knowledge into the model. What is more, Stan's main inference engine, Hamiltonian Monte Carlo sampling, is amiable to diagnostics, which means we can verify whether our inference is reliable. Stan is an expressive probabilistic programing language that abstracts the inference and allows users to focus on the modeling. The resulting code is readable and easily extensible, which makes the modeler's work more transparent and flexible. In this tutorial, we demonstrate with a simple Susceptible-Infected-Recovered (SIR) model how to formulate, fit, and diagnose a compartmental model in Stan. We also introduce more advanced topics which can help practitioners fit sophisticated models; notably, how to use simulations to probe our model and our priors, and computational techniques to scale ODE-based models.


Sujets)
COVID-19
SÉLECTION CITATIONS
Détails de la recherche